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Received 9 December 1981, in final form 16 March 1982 

Abstract. R-separable coordinate systems are introduced as a new class of systems in 
which the equations of general relativity may be solved. The static, axially symmetric 
vacuum and electrovac Einstein field equations are solved for two such systems, tangent 
spheres and bispherical. The bispherical is found to be more versatile than any previously 
used coordinate system in that its eigensolutions can represent the exteriors of single 
point, double point and line sources. The tangent sphere eigensolutions are found to be 
generalisations of the Curzon solution. The relatively simple nature of the individual 
bispherical eigensolutions allows explicit integration of the field equations for a completely 
general, static, two-body source. The bodies are then charged, according to the Weyl 
formalism, and the conditions for balance obtained. Finally, it is shown that all vacuum 
Weyl solutions are either type I or type D. 

1. Introduction 

In adapting any mathematical model to represent a particular realistic physical situ- 
ation, the question of which coordinates to employ will inevitably arise. Obviously 
in a generally covariant theory, like the general theory of relativity, it is immaterial, 
from a purely formal point of view, which coordinates are ultimately chosen. However 
from a practical point, a judicious choice of coordinate systems can make the difference 
between solving the problem completely (mathematically exact) and not obtaining 
any solution whatsoever. Indeed, even though the idea of fitting the coordinate system 
to the problem is not new and is frequently used in physics, the general relativist, 
more than most, understands the true significance and beauty of well chosen coordin- 
ates. He is most often plagued with a large number of unknowns which are generally 
coupled in a nonlinear manner. 

As an outstanding example of (mathematically) well chosen coordinates, one can 
consider the Weyl (1917) form of the metric for a static, axially symmetric, vacuum 
space-time. It was shown by Weyl that the line element for all such systems is 
reducible, with the right choice ('cylindrical' type) of coordinates, to 

d s 2 = e w  dt2-e"-w(dp2+dz2)-p2e-w dq2  (1.1) 

where w and U are functions of p and z.  Moreover the Einstein vacuum field equations, 
R,, = 0, reduce to 

v 2 w  = w,, + w,, + p - l w ,  = 0 (1.2) 
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2402 J Carminati and R S Sarracino 

and 

(1.3) 

Subscripts refer to partial differentiation with respect to the indicated variable. Con- 
sequently one need search only for harmonic functions. 

Having established the Weyl coordinates and having tentatively regarded them as 
cylindrical (they are actually the analogue to the cylindrical coordinates of flat space), 
it is then natural, in the quest for solutions to the Laplace equation, to go one step 
further, guided by the symmetries of the source configuration, and consider other 
coordinates (oblate or prolate spheroidal) which are related in the usual way to the 
cylindrical coordinates of flat space. Many authors have used this procedure not only 
to find new exact solutions but also to help clarify and interpret known ones (Erez 
and Rosen 1959, Zipoy 1966, Bonnor and Sackfield 1968, Szekeres 1968, Voorhees 
1970). The main purpose of this paper is to explore Weyl-type coordinate systems 
whose eigensolutionst can represent exteriors of bounded, physical sources such as 
'multi-point' or 'bar' type. 

Thus far only those simply separable coordinates have been used (Zipoy 1966, 
Bonnor and Sackfield 1968, Voorhees 1970) whose eigensolutions, for finite bounded 
systems, represent single body sources such as disc or single point (e.g. the Curzon 
solution in Weyl polar coordinates). Consequently a possible alternative would be 
the remaining simply separable coordinates based on first and second degree surfaces, 
of which there are eleven in total. An examination of these, however, reveals that 
the eigensolutions are not suitable. The next alternative, and the one that will be 
pursued here, is to investigate the more numerous R-separable coordinate systems 
(Moon and Spencer 1971). These afford a much richer variety$. 

The bispherical coordinate system (7, 6, rp), in particular, is found to be well suited 
for two-body configurations. This system has a remarkable versatility in that it offers 
coordinate separated (eigen) solutions for single point, double point, finite single line, 
infinite line and single and double semi-infinite line configurations. Previously obtained 
double point and finite line solutionss have not been eigensolutions. The tangent- 
sphere coordinates (k,  U, rp) yield a previously unobtained generalisation of the Curzon 
solution. 

Here, only the vacuum solutions are studied. Consequently, the idealised mass 
distributions, as is commonly done (Zipoy 1966, Winicour et a1 1968, Voorhees 1970, 
Cooperstock and Junevicus 1974), are inferred from singularities in the Riemann 
tensor (specifically the Kretchmann scalar). 

1 2 2  U, ' W ( W P  - - W Z ) ,  0, =pw,w,. 

2. Tangent sphere solution 

In this coordinate system, the metric (1.1) becomes 

e-w,u 
2 2(dp2+du2)- 2 2(drp)* 

e"-w 
ds2 = ew dt2- 

( P 2 + Y  1 ( k 2 + V  ) 

t That is,solutionsof (1.2)and(1.3)whichresultwhenseparable-variablesolutionsof theLaplaceequation are 
used. 
$ In contrast to simply separable coordinates, there are theoretically an infinite number of R-separable 
coordinates. 
0 Infinite superposition of eigensolutions. 
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where the coordinates are related by (see figure 1) 

p = p / r 2  = (sin ~ ) / r ,  

U = z / r 2  (cos ~ ) / r ,  r 2 = p  + z ,  0cOS.rr. 2 2  

v=-constant 

p=oc 
Figure 1. Tangent sphere coordinates. 

With this metric, the vacuum field equations reduce to 

U, =[CLl!CL2+u2)I[CLY(w: - w z ) - ( C L 2 - ~ 2 ) w ” w c r l ,  

-U, = [ ~ / 2 ( ~ 2 + u 2 ) ] [ 4 ~ u W ~ W , + ( ~ 2 - u 2 ) ( W ~  - W t ) ] .  

By substituting 

w = (,U’+ u ~ ) ” ~ M ( ~ ) N ( u )  

into (2.2), it then follows that M and N satisfy 

d 2 N  T +  k N  = 0, 
d2M 1 d M  
dCL CL dCL du  
----j-+--- k M  = 0,  

( 2 . 3 a )  

(2 .3b )  

(2.4) 

(2 .5 )  
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k being the separation constant. Setting k = -q2t ,  the solutions of (2.5) are as follows. 

(2.6) 

Class (i): q # 0. 

M = A Jo(qp 1 + B Yo(qp 1 E Mo, 

M = A + B In&), N = C+Du. (2.7) 

A-D and q are arbitrary constants. Jo and Yo are the zeroth-order Bessel functions 
of the first and second kind respectively. 

av/av = - p 2 ~ 2 N ( ~ +  uN)+pun;l~2(~+pn;l)-p(p2-u2)~n;l~N, ( 2 . 8 ~ )  

-av/ap = p ~ ~ ( ~  +2uN)(4~+pn; l )+3p(p2-  u 2 ) ( ~ 2 n i 2 - ~ 2 N 2 ) ,  (2.8b) 

where a dot denotes differentiation with respect to p or U. After a lengthy calculation, 
(2.8) yields the following. 

N = C e'" + D e-'". 

Class (ii): q = 0. 

Substituting (2.4) into equations (2.3) yields 

Class (i). 

sv = -$ap[qu2M&1+4p(M: +M: -2qpMch41)]+3qqpp2u(M: -Mi) 
+ q 'CDp '( U' - $p *) (Mi  + M t  - M f l l / q p )  - 2CDp *(3Mi -M: ) +Eo 

(2.9) 

where 

Mi E AJi(qp  1 + B Y i ( q p  1, 

J1  and Y1 are the first-order Bessel functions of the first and second kind respectively. 

cy E,C2e2q"+D2e-2q" p ~ C2 e2qv - 0 2  e-2qv 
9 

(2.10) 

Class (ii). 

(2.11) 

where 

x[2A +B + B  ln(p)]+%D2p41n(p)[A -% +$B ln(p)]+El. (2.12) 

The function Y o ( q p )  is singular (+-CO) as p+O whereas Jo(qp) is regular 

(2.13) 

Eo and El are arbitrary constants. 

everywhere. Consequently not only the metric, but also the Kretchmann scalar, 

R 2 ~ R w e  8 P"a5 = 8 e 2 w - 2 v  [ ( R : ~ z ) ~ + ( R : ~ ~ ) ~ + ( R ~ o ~ ) ~ + ~ ( R : ~ z ) ~ I ~  

t The case k = q 2  can be recovered from the above solutions by letting q + iq, C -.&C - i l l ) ,  D + f ( C  +iD) 
in all expressions. 

t 5 x3(Zg + Z : )  dx = $x4(Z: + Z :  - 2 o Z J x )  +$xx'Z:, Zo=AJo(x) +BYo(x) ,  Z1 = A J l ( x )  + B Y l ( x ) .  
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is singular? all along the z axis unless B = 0, in which case they are both singular only 
at the origin. Therefore it is reasonable to interpret the class (i) solution, for B # 0, 
as that describing the exterior of some idealised infinite line mass located along the 
z axis. For B =0, the source, with total mass m = -$A(C+D),  is point-like and 
located at the origin. For the class (ii) solution one finds that the behaviour of the 
metric and scalar is essentially the same as in the class (i) case. Note that for D # 0, 
B = 0, the harmonic potential is C / r  + D z / r 3  and the solution corresponds to some 
generalisation of the Curzon one (Synge 1960). 

3. Bispherical solution 

In this coordinate system the metric (1.1) becomes 

a sin2 e e-w a 2  = u - w  

ds2 = ew dt2 - (dT2 +de2)  - 2dv2 (3.1) (cosh r/ -COS 0)  (cosh r/ -COS 0)  

where the coordinates are related by (see figure 2) 

p 2 +  ( z  - a  coth q ) 2  = a2/sinh2 7, r 2 - 2 a p  cot 0 = a 2 .  

Figure 2. Bispherical coordinates. 

t There exists at least one path of approach, to the point in question, in which R2 becomes singular 
(Gautreau and Hoffman 1969, Cooperstock and Junevicus 1974). 
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The vacuum 
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field equations reduce to 

) =o, sin e-( a w ,  
aq cosh 7 -COS e (3.2) 

au sin 8 
a7  COS^ 7 -COS e )  
-= 

x [( w - w t ) sin 8 sinh 77 - 2 W ~ W ?  (1 - cos 0 cosh r ]  )], ( 3 . 3 ~ )  

av sin 8 
ae - ~ ( C O S ~  7 -COS e) 

__-  

x [ ( w  - w )( 1 - cos 8 cosh 77 ) + 2 wow? sin 8 sinh 771. (3.36) 

Solutions are sought which are of the form 

w =(cosh 77 -COS e)1’2M(V)N(e). 

d2M/dr]’ - [$+ S(S + 1)]M = 0, 

(3.4) 

After substituting (3.4) into (3.2) one finds that M and N are required to satisfy 

(3.5) 

(3.6) 

where s(s + 1) has been chosen as the separation constant. The solutions of (3.5) and 
(3.6) are 

d2N/de2 +cot 8 dN/de + s (s + l)N = 0, 

9 (3.7) 

(3.8) 

where P, and Q, are the Legendre functions (Gradshteyn and Ryzhik 1965, Macrobert 
1967, Erdelyi et a1 1954) of the first and second kind respectively and A-D are 
arbitrary constants. 

With the substitution of (3.4) into (3.3a,b), it follows that 

av/dr] = 4 sin e[M2N& sinh r] cos 8 - 2M.N&(1 -cos 6 cosh r ] )  

M ( r l )  = A e ? ( S c l / 2 )  + Be-V(sf’/2) 

N(e) = CPJCOS e )  +DQ,(COS e), 

-MMN2sin 8 cosh r] +$sin 8 sinh 77(4M2~2-4M2N2-M2N2)], 
( 3 . 9 ~ )  

2 ’ 2 -  ‘ 2  2 -aulae = f sin 8[iM2N2(1 +cos 8 cosh 7) + (M N M N )(1 -cos e cosh 7) 

+M2N& sin 8 cosh 77 + N2Mh cos 8 sinh r] + 2MMNN sin 0 sinh 771 
(3.9b) 

where a dot denotes differentiation with respect to r ]  or 8. 
After some calculation, U is determined to be as follows. 
Case (i): s # -5,O. 

U = f sin e{A(r]) sin 6[&’ + s(s + 1)N2] -MhN2 sinh r] sin 8 

1 

+M~N&(COS e cosh r] - i)}+F(e) 

h(r]) = I M2 sinh 77 dr] 

(3.10) 

where 
(3.11) 
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and F(8) ,  the integrating function, can be written as 

F(B)=-2AB(s +f)’ 5 = COS e. (3.12) 

Case (ii): s = 0. 

v =$[2h(q)D2+N2sin2 8 cosh q(2AB-M2)-2DM2N(cos 8 cosh q - l ) ]+F(8 )  

where 

(3.13) 

1 

N2(6) d5+$(A2+B2)[2D COS B(C+DQo)-C2 cos2 8 

+ 2 ~ ~ 1 n l s i n e / + D  sin2 ~ Q o ( ~ C + D Q O ) I + E ~ .  
1 Case (iii): s = -I. 

(3.14) 

v =&in 8 cosh q ( N 2  sin 8 + N N  cos 8-$N2sin (3.15) 

M = 1 by choice and El is an arbitrary constant. 
Some knowledge of the possible (idealised) sources for the space-time can be 

obtained by studying the singular behaviour of w and R wvapR Table 1 summarises 
the results of this investigation. It shows that the bispherical eigensolutions are indeed 
versatile; more so than eigensolutions of any previously considered coordinate system. 
Certainly with the flexibility as expressed by the arbitrary constants A - D  and s ( s  -$), 

sin 8+E1. 

Table 1. 

Singulart 
S regions of 

Case A B C D s -4 W and R 2  Possible source 

1 Any Any 
Both not 
simultaneously 
zero 

2 As in case 1 

3 As in case 1$ 

4 As in case 18 

5 ZO f O  

6 #O 0 

7 0 #O 

Any 2 0  Any 
With DIC f - 4 2 1 ~ )  tan (sv) 

0 f O  s = f o d d  

E cos sv - ( 2 E / a )  sin sa f n  

integer 

#O 0 Z n  

f O  0 n 

f O  0 n 

f O  0 n 

z axis Infinite line 

z s a  
z < - a  

z p a  
z s - a  

- a S z S a  

z = * a  

z = a  

z = - a  

Semi-infinite 
lines 

Semi-infinite 
lines 

Finite line 
(bar) 

Two point 
source 

Single point 
source 

Single point 
source 

t W + *OD. Also see footnote on p 2404. 
t PA+) = cos(s*)P,(O - (2/a) sin(sw)Qs((). 
8 s = -f corresponds to a ‘pure’ bar. 
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the individual eigensolutionst encompass a myriad of possible representations of 
zxterior space-times corresponding to sources ranging from lines (finite and infinite; 
cases (1)-(4)) to point sources (single and double; cases (5)-(7)). 

When D = 0, the metric is asymptotically flat with total mass 

m = -a (A + B)/JT. (3.16) 

Equation (3.16) in conjunction with the behaviour Rfi,,5Rcl”a5 suggests that for cases 
(5)-(7) the @tal mass, in a NEwtonian sense, associated at each point z =*a, is 
m l  = -aA/J2 and m2 = -aB/J2 respectively$. 

In the next section a study is made of the geodesic equations in order to explore 
further the nature of the arbitrary parameters appearing in the above solution. 

4. Geodesic ‘force’ 

Consider the spatial parts of the geodesic equation, in the (p, z )  coordinate system, 
applied to a test particle which is initially at rest. With the four-velocity as u n  = 
e-w’2(1, 0, 0, 0), the geodesic equation reduces to 

i = 1,2 .  (4.1) 

The analysis for the different cases (see table 1) will be divided into two broad 
categories: (A) the infinite and semi-infinite lines, cases (1)-(3); (B) the finite sources, 
cases (4)-(7). 

A. For these solutions, it is interesting to examine (4.1) for the p-component of 
force ‘near’ the z axis, i.e. 

d2p/ds2+:eW-‘aW/ap = O .  (4.2) 

w, + -(cosh 7 - 1)3’2MD/a6. 

AS e+o,  
(4.3) 

Therefore acceleration is inward (for positive§ density line mass), in the region 
8 = 0 ( z  >a, z < -a), providing DM < 0. Similarly as 8 + 7r (-a < z < a) ,  the acceler- 
ation is inward if KM > 0 but vanishes when K = 0. This implies that D = 0, s = n or 
c = 0, s = 3(2n + 1) or 

c=-’ ~ D T  cot(sv) 

These are precisely the conditions for producing the semi-infinite lines, cases (2) and 
(3), or the point sources, cases (5)-(7). Thus the strut produces no acceleration and 
consequently it can be concluded that it has zero mass density. This observation is 
consistent with the results of Israel (1977). 

B. For these cases, it is more suitable to examine the geodesic equation in the 
(7, 8) coordinate system. 

Now 

(C, D # 0; s # n, :(n + 1)) where n = 0, 1,2,  . . , . 

d22i/dS2-$g”aw/a;i = 0, Y.= (t, 7, e, cp) (no sum on i) (4.4) 

f And a superposition. 
$ It is worthwhile mentioning that this mass separation is also suggested by the geodesic equations. 
5 In a Newtonian sense. 
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where the caret (*) refers to quantities in the (7, 8) coordinate system. As 8 -* T, 

- 2 c  M sin(sr)  
r - e  We+’- (cosh 7 + 1)’” 

T 
(4.5) 

for the bar solutions. Therefore the 8 component of acceleration is inward (positive 
mass) if MC sin(sr)  > 0 at the point in question. Similarly, for the particle solutions 
there is an attractive force at I = f a  (7 + fm) if ACP,(S) < 0 or BCP,(S) < 0 respec- 
tively?. Thus it is evident that for s # 0 there are attractive-repulsive regions as 8 
varies between 0 and T. The special case s = 0 yields ‘point’ sources which are 
attractive for all 8 (see figure 3). 

. +  .- O f  
0-  0 -  .+ 

Figure 3. Force directions at z = a with AC < 0. 

It is clear from the above observations that the parameter s relates to the multipole 
structure of the particles (made up of positive and negative matter). Of course the 
actual multipole moments of the sources still remain obscure at this stage. A given 
s value does not explicitly yield that particular associated moment of the distribution 
(as it does in the classical case) but rather relates to a pseudo coordinate moment$ 
correlated with the symmetrical placement of positive and negative mass ‘unit’ building 
blocks. The fact that the force, on a positive test particle, exhibits a change from 
negative to positive according to direction of approach indicates that the individual 
eigensolutions exhibit unphysical characteristics; but this is no different from the 
classical case of when a series solution is sought. In the classical case, physically 
meaningful solutions, consistent with the appropriate boundary conditions, are usually 
built up from a finite or infinite sum of the eigensolutions. Therefore, with this in 
mind, the next section will be devoted to the explicit determination of e” corresponding 
to a given sum of eigensolutions. 

t Note, on the q =constant coordinate surfaces, q increases in the outward direction near z = -a but 
inwardly near z = +a. 
t The Schwarzschild solution appears to possess higher multipole structure in the Weyl coordinate system 
(Szekeres 1968). 
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5. General two-body solution 

Motivated by the comments in the previous section, it would be interesting to consider 
a superposition, w, of eigensolutions which would correspond to a general two-point, 
axisymmetric, static source. The relevant eigensolutions would then be given by (3.4), 
(3.7) and (3.8) withD = 0 and s = 0, 1,2,  , . . . Therefore a suitable w will be of the form 

m m 

w = 1 w, = (cosh q -cos 0)'12 Ms(q)Ns(0) 
s = o  s = o  

where 

+B, e-n(s+1'2), N, = P, (cos 6 ) .  (5.2) n(s+1/2) M, = A s  e 

After a lengthy computation, the field equations (1.3) determine v as 

sin 0 
v = -  1 {sin 8 

2 p , s = o  
+ N p J s  (s + 1) + i]} - sin 0 N p s  (MJ& sinh q 

+ ; M a ,  cosh 77 - l l p S ) + N J Y s [ ~ ~ ~  8(211p, +A,,)-2rI,,])+F(0) (5.3) 
where 

and F ( 8 )  can be written as 

with 
.1 

The solution is asymptotically flat with total mass 

m = z (  (As+&)).  
s=O 

(5 .5 )  

As before (Is 3), the expression for m suggests that one associate the masses 
m l  = - ( U ~ ' & ) X ~ = ~ A ,  and m2 = - (a /h )Z ,"=oBs  at the singularities z = a  and z = -a  
(on the z axis), respectively. 

One immediate question that comes to mind, over sources of this nature, is the 
requirement for equilibrium. Such idealisations as struts are present to preserve the 
static nature of the space-time. But it can be shown that balanced (no strut) bodies 
can exist with the appropriate introduction of negative matter (Szekeres 1968). A 
more realistic situation might require electrostatic repulsion to overcome the gravita- 
tional attraction. To this end, in the final section of this paper, the point sources will 
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be charged following 
stock and de la Cruz 1 
condition for balance 

the Weyl procedure (goo = goo(@))? (Majumdar 1947, Cooper- 
.979). By then requiring equilibrium without a strut, the general 
can be found within this framework. 

6. Balance 

If ew and e' in ( 1 . 1 )  constitute a solution to the vacuum field equations (1.2)-(1.3), 
then a Weyl (1917) solution (e*, e',,) of the electrovac equations can be readily 
obtained by letting (Cooperstock and de la Cruz 1979) 

ew + ( 1  - b2)' ew / (b2  ew - 1 ) ' s  e*, e' +eu E e' (6 .1)  

and 

@ = b(ew - 1) / (b2  ew - 1 )  

where b is defined by 

( 1  + b 2 ) / b  = 2m/q.  (6.3) 

The charged version, (G,, fis, a,), of an individual vacuum eigensolution (ws, U , )  can 
be easily obtained by appropriate use of equations (6.1)-(6.3) in conjunction with the 
solution presented in the previous section but with no sumS. 

As r+m, 

e's = 1 - J2a (b2  + l ) ( A s  + B s ) / ( b 2  - l ) r  + . . . , 
@ , = J 2 a b ( A , + S , ) / ( b 2 - l ) r + .  . ., i& + 0. (6 .5)  

(6.4) 

Therefore, as before, associate masses and charges by 

From (5.3)-(5.4), 

O,(p =0,  - a < z  < a ) = - A , B , ( 2 s + 1 ) = - ( 2 / a 2 ) ( 2 s + l ) ( m ~ m 2 - q ~ q 2 ) .  (6 .8)  

Thus the balance situation which is characterised by the absence of the strut (& = 0) 
occurs when 

m1m2 = qlqz 

which is the usual Newtonian balance condition. 
From equations (6.6)-( 6.7),  

(6.9) 

q1/ml = q2/m2 (6.10) 

which together with (6.9) yields m: = q:, mi  = q i .  Thus for every individual eigensol- 
ution, balance is achieved only when the bodies are critically charged. 

t @ denotes the resulting electrostatic potential. 
$ Alternatively, the solution in 8 3 with D = 0 and s = 0, 1,2,  
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Consider now the charged version of the general two-body solution, w = Z?=O w,. 
Proceeding as before, one finds that the charge and mass separation are 

ml=&(-)( f A,), m2=&(*)( JZ b 2 - 1  s = o  f Bs) (6.11) 
J2 6'-1 s=o 

and 

(6.12) 

Thus (6.10) holds generally for two charged bodies in the Weyl formalism (Gautreau 
et al 1972). However in this case, the more complicated condition 

= O  (AS+lBS +AsBs+1) 
(2s + 1)(2s + 3) 

m m 

- (2s + l)AsB, + (S + 1)[2(s + 1)' - 11 
s = o  s=o  

(6.13) 

is required for balance, It is obvious from (6.13) that in general the Newtonian balance 
condition, for a superposition, will not hold. These results clearly indicate the nonlinear 
character of the field resulting from superposition. Linear superposition would have 
required 

The above observations suggest that even in the Weyl formalism, it may be 
impossible for two spherically symmetric charged particles-if indeed one could 
recognise them as such (Bonnor 1981)-to be balanced solely with the Newtonian 
condition (6.9) (Barker and O'Connell 1977). 
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Appendix 

The Newman-Penrose method (Newman and Penrose 1962, Chandrasekhar 1979) 
will be used to determine the algebraic type. A suitable complex null basis, ( f ,  n, m, f i ) ,  
is 

m = m " - = -  a e'"+;)''( i-+- a a )  , f i  =complex conjugate of m, 
ax a ap az 
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so that 

= I F n  " + F - F f i  " - m "fi iL 

is the contravariant form of the Weyl metric (1.1). 
The tetrad components of the Riemann tensor are 

~ o = - R , p , s l " m B I Y m S  = 4 e - U ( R o l ~ l - R ~ ~ ~ ~ - 2 i R 0 1 ~ 2 ) ,  

~ 1 = - R , p , ~ l u n p I " m s  = 0, 
V ~ = - R , ~ ~ s l ~ n * ( I ~ n ~  - m y f i s )  = -R0303/2p 2 , 

q3 3 R apVslun 'n  ' f i  = 0, 
T 4 = - R a p V S n u f i p n Y f i S  = i i / o .  

By considering the roots, t, of the equation 

q o t 4  -t 4 q 1 t 3  -t 6'P2t2 + 4q35  + q 4  = 0 

it follows that the Weyl metrics can only be of type I or type D. If \IT0 = 9 4  = 0 (VZ # 0) 
or 9P; = qoq4 then the space-time is Petrov type D, otherwise it is type I t .  
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